

Project 4 - Secret codes

Let’s do something totally different now. No turtles or graphics (unless
you want to add some), but lots of fancy text manipulation. Secret
codes have been used for ages, even Caesar, two thousand years
ago, had his own “recipe” for encrypting messages.

You should know that you can talk to and give commands to the
cursor (the flashing bar inside the text box): move the cursor around
and have it insert, delete, or change the text as it moves. Let's try this!

The cypher (encoding) in this project is pretty simple, nothing like
spies and governments use nowadays, but it is a fun starting point.
The process, for you, will resemble this:

• Create a text box for your message.

• Think (pseudo-code) about a way to “scramble” your text.

• Create a procedure that manipulates the text, in a way that

matches your pseudo-code.

• Create a procedure that does the exact opposite, to decode

the scrambled text.

Page 54

A plain background
Start a new project and, as a good habit, start by naming your
project. Remember also to save your project often!

You are going to create two encryption methods on two separate
pages. Put a nice background on Page1. Type this in the Command
Centre:

setbg 'violet'	 SETBG STANDS FOR SET BACKGROUND

setbg 111	 JUST A LIGHTER SHADE

In case you don't like violet, there is a complete Lynx Colour Chart at
the end of this book. Or you can use a graphical background, as we
did in Project 3. Otherwise, you can get rid of the turtle, you
won’t need it in this project. Right-click on the turtle to open its
dialog box and click on the garbage can.

Create a text box for your encrypted message
Create a large text box on your page. Click on the menu, choose
Text. Right-click on it to open its dialog box and name it MyText.

Type one or two long sentences in the text box. This is called “clear
text”, a text that anyone can read.

Pseudo-code
Think of a way to scramble the message. In this first example, you will
insert an “n” after each character (letter).

WHAT IS PSEUDO-CODE?
Thinking in pseudo-code means that you make the program in
your head (or on paper), using your own words, instead of real

Lynx instructions.

Page 55

Here is an example of pseudo-code for inserting a “n” after each
character:

A. Place the cursor at the
beginning of the message.

B. Move the cursor “one
character” to the right.

C. Insert an “n”.

D. Repeat steps B and C until

you reach the end of the message (you should figure out
how many characters there are in the message)

Make a procedure to encode the text
The pseudo-code sounds good. Now put that into real Lynx code!

In Lynx, you can give commands to the cursor (the insertion point)
that’s inside a text box, just like you can give commands to the turtle.
Here are the commands you will need for this secret code:

• top 	 MOVES THE INSERTION POINT TO THE TOP OF THE TEXT BOX. 
• cf 	 (STANDS FOR CURSOR FORWARD)  
	 MOVES THE CURSOR ONE CHARACTER TO THE RIGHT.

• insert 'n'	 INSERTS WHATEVER LETTER, NUMBER OR SYMBOL  
	 YOU WANT, EXACTLY WHERE THE INSERTION POINT IS.

The other important trick is that the name of the text box (message)
returns the entire contents of the text box, as a long, long word. Type
this in the Command Centre:

show mytext

In our example, mytext reports See you at four in the park
as one word.
You can use the primitive count to figure out how many characters
there are in that long, long word, which is to say, how many
characters there are in the text box:
show count mytext
27 	 THIS IS WHAT LYNX RETURNS FOR OUR EXAMPLE

That is exactly how many times you have to repeat steps B and C in
the pseudo-code above.

Page 56

Now do you see how you can turn your pseudo code into real Lynx
code? We will insert the letter n. You can choose any letter.

A = top, B = move cursor, C = insert 'n' and D = repeat [BC]

The instruction repeat count mytext is the same as repeat 27
times (to match the number of characters in the Text box) the
instructions inside the square brackets. It always gets the right
number regardless of the message you type.

Try the procedure from the Command Centre:

code

For your convenience, create a button to run the procedure. You have
done this before. Here’s a quick recap.

Click on the menu then choose Button.

A button (Nothing) appears in the centre of the page. Right-click on it
to open its dialog box.

In the dialog box that appears, type CODE as the
label (write anything you like), and choose the
procedure code in the On Click menu. Click Apply.

Type some new text in the text box and test the new button.

Page 57

Nnenendn ntnon ndnencnondnen nnnonwn?n
Do you understand the title above? Hard, eh! Need to decode now?

First some pseudo-code: Look at your encoded message. Think
about what you DID to the message to encode it, and figure out a way
to “undo” this.

A. Bring the cursor to the beginning of the message.

B. Move the cursor “1 character” to the right.

C. Delete one character (the 'n' in our example).

D. Repeat steps B and C up to the end of the message

(CAREFUL HERE. The encoded message is TWICE as long as
the original message, because you added lots of the letter “n”)

You will need one more command here:
delete 	 DELETES ONE CHARACTER TO THE RIGHT OF THE 
	 CURSOR MUCH LIKE THE DELETE KEY ON YOUR KEYBOARD  

Create this procedure in the Procedures Pane:

You see the first input of repeat?

The original message had 27 characters. You added 'n' 27 times to
scramble the text, so now count mytext will say you have 54
characters in the text box. Want proof? Type show count mytext in
the Command Centre. Divide that by 2 in order to delete just the 27
'n'.

WHY THE “()” AROUND “COUNT MESSAGE”?

They are needed, because without them, Lynx will try to divide the
message (the long word) by two. That won’t work!  

With the parentheses, Lynx will FIRST count the message (that will
be a number), and THEN divide that number by 2.

Page 58

Create a button in the usual way and give it a label. Choose decode
in the On Click menu.

Type a new message and test both buttons.

Make it harder to decode!
You can train your eye to “detect” the character that was inserted (“n”
in this case) and ignore it as you read. Instead of always inserting the
same letter, try this:

Select the procedure code, copy it, click somewhere at the end of
your procedures, and paste it. You now have two copies of the
procedure code. Warning: you cannot have two procedures with the
same name! Change the name of the second procedure to
better.code, like this:

 Now change the better.code procedure from this… to that.

Instead of always inserting 'n' (procedure on the left), you can ask
Lynx to pick a random letter and give it to insert (procedure on the
right). Your poor eyes will be in pain now:

In this example, we asked Lynx to randomly pick one of these six
letters 'mwelun' and insert them into your text. These letters are
harder to “ignore” than one letter like “n” or “z” or “x” so they make
the encoded text even harder to read.

Create a new button for your better.code procedure.

 
Page 59

How to use this project with your friends

1. Tell your friend “I will send you a message. Delete every second

character to decode it”.

2. Use your Lynx project to encode a message.

3. Copy and transmit the encoded message to your friend - by

email, text…

4. Or you can share your Lynx project with your friend. See

Appendix F to learn how.

Pop Quiz: For your better.code procedure, do you think
your decode procedure needs to change?

Mission Impossible: Next level Secret Codes
When you encode a message, you don’t have to hide it as you hand it
to your friend, because nobody will understand the text. Here’s a
different approach. The message is NOT encoded, but it is simply
invisible unless you have the correct password.

Ready for a different spy adventure? Save your
current project - the small red dot indicates that
there is something to save.

Then choose New project in the Down from the
cloud menu:

And again, start by giving a new name to this project.

If you wish, make a nice background (use setbg to get a coloured
background).

Create a large text box for your message, name it MyMessage.

Above it, create a smaller text box for entering the password, name it
Password. Again, always use a single word, no space (not even at the
end).

Page 60

The large text box is where you will type the message you wish to
“hide”. Here is an example of what you could type in the text box:

Let’s try things “manually” before we create procedures and buttons.

Type something in the MyMessage text box.

Then type this in the Command Centre:

MyMessage, hidetext	 IT IS IMPORTANT TO INCLUDE MYMESSAGE,  
	 OTHERWISE, YOU COULD HIDE THE WRONG TEXT BOX!

MyMessage is now invisible. Don’t worry!

NOW ABOUT THE PASSWORD…
Type CanadaRocks, all one word, in the Password text box:

Then type this in the Command Centre:

show password	 PASSWORD IS THE NAME OF THE TEXT BOX  
CanadaRocks	 IT REPORTS THE CONTENTS OF THE TEXT BOX

And now, type this:

show password = 'canadarocks'	 IS THIS EQUAL TO THE 
true	 CONTENTS OF THE TEXT BOX?

Lynx reports true because the contents of the text box (what is
reported by password) is really equal to 'canadarocks'. Casing
(uppercase, lowercase) does not have to match.

Page 61

And finally, try this, again in the Command Centre:

if password = 'canadarocks' [MyMessage, showtext]

The text box should reappear:

OK, you have all the pieces now. Let’s code!

Imagine this scenario in your head:

A. You tell your friend (in person or by text): “use canadarocks to
reveal my secret” (this is sooo spy-talk)!

B. You open this project and type a secret message in the large
text box named MyMessage.

C. You click on a HIDE button to hide the message.

D. You share the project with the invisible message (see Appendix

F) with your friend. Even if the project is intercepted, people
who don’t have the password won’t be able to see the
message!

E. Your friend enters the password in the Password text box and
clicks on CHECK PW. If the password is good, the message
appears for 5 seconds, then vanishes just like in movies!

Here all all the parts you are about to create:

Page 62

OK, LET’S GET STARTED.
Create this procedure in the Procedures Pane (cleartext will clear
the current text box, the one that is listening to your commands):

Then create a button, with Hide as the label, and choose
hide in the On Click menu.

Resize and relocate the button if you wish.

Try the button. The Password box will be cleared of text, and the
MyMessage text box will disappear. To get it back, either type this in
the Command Centre:

MyMessage, showtext

or use the Project tree to find the text box, edit its dialog box
and check the box Visible.

Next, create the procedure that will be executed if your friend has the
right password. It looks complicated, but it’s not:

• Line 11: If you have the right password, I'll show you the text box

with the message.

• Line 12: Going to the very end of the text, where it says “… will

self destruct in five seconds…”

• Lines 13 to 16: set the background colour to “the current colour

+ 10”, and insert '4…' then 3, 2, 1.

• Line 18: Hide the message.

• Line 19: Clear the password.

Page 63

To test this, click on your HIDE button, and type this in the Command
Centre:

display

The message should reappear, and you should see some flashing of
the background.

Last but not least, code a procedure to validate the password.

Remember, the people with whom you share your project won’t see
the Procedures Pane (your code contains the actual password) and
they won’t have a Command Centre. So you have to provide a
procedure and a button to validate the password:

Create this procedure…

and create a button to run it:

TEST, AND SHARE
Do you have all these elements?

Test everything: Type a message, click HIDE to hide it, try a bad
password (and click CHECK PW), then try the good password.

When sharing (see Appendix F for instructions), make sure you keep
the project Private, so people won’t see your code (and password).

Remember, you can edit your own code and decide on a new
password at any time!

Page 64

All the procedures of this project
To help you, here are all the procedures you need. To explain things
we have included comments which begin with a ; and are in grey.
Your code and comments can be different, of course!

ENCODING A MESSAGE
to code
top
repeat count mytext
 [cf insert 'n']
end

to decode
top
repeat (count mytext) / 2
 [cf delete]
end

to better.code
; works for code and better.code
top
repeat count mytext
 [cf insert pick 'mwelun']
end

HIDING A MESSAGE
to hide
password, cleartext
mymessage, hidetext
end

to display
mymessage, showtext
mymessage, bottom
wait 10 setbg bg + 10 insert 'four...'
wait 10 setbg bg + 10 insert 'three...'
wait 10 setbg bg + 10 insert 'two...'
wait 10 setbg bg + 10 insert 'one...'
wait 10
mymessage, hidetext
password, cleartext
end

to check.password
; change the password here
if password = 'canadarocks' [display]
end

Page 65

More advanced ideas for super spies
ENCODING A MESSAGE
Here are some ideas for different encryption recipes. Can you code
them? Look exactly at what is being inserted, and how the cursor is
moved:

MORE FUN WITH THE COUNTDOWN
In the last project, during the countdown before the message
disappears, the background changes colour every second. Think of
other ways to make the countdown fun:

• you add a sound, for example, a paper crumpling or burning.

• a different text box shows 5, 4, 3, 2, 1, 0.

• the computer reads that text box at every second.

Curriculum Links for Ontario

C3.1 - Solve problems and create computational representations of
mathematical situations by writing and executing efficient code,
including code that involves conditional statements and other control
structures.

C3.2 - Read and alter existing code, including code that involves
conditional statements and other control structures, and describe how
changes to the code affect the outcomes and the efficiency of the
code. 

Recipe Decode method

repeat count mytext

[insert 'un' cf]

Move one character to the right
and delete two characters

repeat count mytext

[insert pick 'wmunel' cf cf]

Delete every third character

repeat count mytext

[insert 'u' cf insert ’n' cf cf]

???

Page 66

